The "nearly pure ice" could be used for drinking water or producing oxygen or methane for astronauts, scientists say. They discovered the deposits using images from the Mars Reconnaissance Orbiter.
Advertisement
Scientists said Thursday they had detected thick ice deposits on steep slopes near the surface of Mars that could support a future human mission to the planet.
Researchers have long known about shallow ground ice and ice deposits near the Red Planet's poles. But the new report published in US journal Scienceshows eight sites where "nearly pure ice" is exposed along steep underground cliffs nearer to the middle of the planet.
"It was surprising to find ice exposed at the surface at these places," said Colin Dundas of the US Geological Study, who led the study. "In the mid-latitudes, it's [ice] normally covered by a blanket of dust or regolith [loose bits of rock on top of bedrock]."
The slopes — called "scarps" — were found in the northern and southern hemispheres at latitudes that on Earth would be equivalent to Scotland or the tip of South America.
Researchers said the depth of the ice ranges from a few feet (one meter) below the surface to as deep as 100 meters or more.
The ice contains bands and color variations that indicate it was formed layer by layer. "Our interpretation is that this is consolidated snow deposited in geologically recent times," Dundas said.
But scientists said it remained unclear how and when exactly the deposits formed, adding that the lack of asteroid craters on the surface suggested they formed relatively recently.
The report said the ice could help future human missions to the Red Planet. Astronauts could use the ice for drinking water or combine it with carbon dioxide in Mars's atmosphere to produce oxygen and methane, a rocket propellant.
"You can go out with a bucket and shovel and just collect as much water as you need," said planetary scientist Shane Byrne, a co-author. "I think it's sort of a game-changer."
Byrne added that the ice's location nearer to the middle of the planet made it far more accessible for any human visitors: "It's also much closer to places humans would probably land as opposed to the polar caps, which are very inhospitable."
But the eight scarps might not serve as good locations for a long-term human settlement as their latitude means they become bitterly dark and cold during the Martian winter.
Leslie Tamppari, an MRO scientist with NASA's Jet Propulsion Laboratory, said a less ambitious mission could give scientists a lot of information about the history of the Martian climate.
"If you had a mission at one of these sites, sampling the layers going down the scarp, you could get a detailed climate history of Mars," she said.
NASA is planning a first human mission to Mars by the 2030s.
NASA's rover Perseverance has landed on Mars
Perseverance is NASA's fifth Mars rover and its biggest and heaviest to date. Its mission on the Red Planet has started this Thursday.
Image: NASA/JPL-Caltech
A new rover for the red planet
NASA's Mars 2020 Perseverance rover (shown in artist's illustration) is the most sophisticated rover NASA has ever sent to Mars. Ingenuity, a technology experiment, will be the first aircraft to attempt controlled flight on another planet. Perseverance touched down at Mars' Jezero Crater on February 18, 2021 at about 20:57 UTC with Ingenuity attached to its belly.
Image: NASA/JPL-Caltech
Everything prepared
NASA engineers loaded the Mars rover Perseverance onto an Atlas V rocket at the start of July 2020. The rocket took off on July 30 from Cape Canaveral, Florida. The rover arrived at the orbit around Mars in early February 2021.
Image: NASA
Presentation in a clean room
This is how Perseverance looked when it was presented to the public in 2019. The rover will support NASA's Curiosity rover, the most modern rover until Perseverance came along. The new rover weighs a little over a ton — 100 kg (220 pounds) more than its predecessor. And at 3 meters (10 ft) long, it's also 10 centimeters longer as well.
Image: NASA/JPL-Caltech
More performance
Perseverance can be loaded with more research instruments and sensors than its predecessor. And its gripper arm, with its cameras and tools, is stronger, too. The rover can collect samples from Mars. It's got 23 cameras and many other instruments. One mission is to test whether it's possible to extract oxygen from Martian rock. But, hey, what's that standing next to the rover on the ground?
Image: NASA/JPL-Caltech
A small drone
That's right! Perseverance has a helicopter onboard. That's never happened on a planetary mission before. The helicopter is completely new territory for its developers. It will be the first time they're able to experience and collect data from flight in atmospheric conditions that are different from those on Earth, and in a gravity that is about a third of our own.
Image: NASA/Cory Huston
The robotic giant
Curiosity is the largest and most modern of all Mars rovers currently deployed. It landed on August 6, 2012, and has since traveled more than 21 kilometers (13 miles). It is much more than just a rover. Its official name is "Mars Science Laboratory," and it really is a complete lab on wheels.
Image: picture-alliance/dpa/Nasa/Jpl-Caltech/Msss
What's in it?
For example, it contains a special spectrometer, which can analyze chemical compounds from a distance with the help of a laser; a complete meteorological station that can measure temperature, atmospheric pressure, radiation, humidity and wind speed; and most importantly, a chemistry lab that can run detailed analyses of organic compounds and is always on the hunt for traces of alien life.
Image: NASA/JPL-Caltech/MSSS
Not just scratching the surface
Curiosity has shown that life would theoretically be possible on Mars. But it hasn't discovered any life, yet. The robot's arm is equipped with a full power drill. Here, it's taking a sample in "Yellowknife Bay" inside the Gale Crater.
Image: NASA/JPL-Caltech
Off to the lab!
The Mars dust is processed by a large number of instruments. First, it's filtered and separated into different-sized particles. Then, those get sorted and sent off to different analytical laboratory machines.
Image: picture alliance/AP Photo/NASA
A tiny predecessor
Curiosity's predecessors were much smaller. On July 4, 1997, the small Mars rover Sojourner left its first tire tracks behind in the dust of the red planet. It was the first time a mobile robot had been left to its own devices there, equipped with an X-ray spectrometer to conduct chemical analyses and with optical cameras.
Image: NASA/JPL
Size comparison
Three rover generations. (The tiny one up front is Sojourner.) At 10.6 kilograms (23 pounds), it's not much bigger than a toy car. Its top speed: 1 centimeter per second. Opportunity weighs 185 kilograms — roughly the equivalent of an electric wheelchair. Curiosity is as big as a small car, at 900 kilograms. The big ones travel up to 4 or 5 centimeters per second.
Image: NASA/JPL-Caltech
Almost four months of duty
Sojourner travelled about 100 meters during its lifetime and delivered data and pictures until September 27, 1997. This is one of the last pictures of it, taken nine days before the radio connection broke down. Sojourner probably died because the battery did not survive the cold nights.
Image: NASA/JPL
Paving the way for tomorrow's technology
Without the experience of Sojourner, newer rovers could have hardly been envisaged. In 2004, NASA landed two robots of the same model on Mars: Spirit and Opportunity. Spirit survived for six years, travelling a distance of 7.7 kilometers. The robot climbed mountains, took soil samples and withstood winter and sandstorms. Its sibling, Opportunity, lost contact on February 13, 2019.
Image: picture alliance/dpa
Lots of gadgets
Opportunity passed the marathon distance of 42 kilometers back in 2015, and to this day, it has covered much more ground than Curiosity. It can take ground probes with its arm. It has three different spectrometers and even a 3D camera. It was last operating in "Perseverance Valley," an appropriate workplace for the sturdy robot, before being incapacitated by a sandstorm.
Image: picture-alliance/dpa
The red planet's landscapes
This panorama was taken by Curiosity's mast camera. The most modern of the rovers will stay in service as long as possible — hopefully at least another five years. The Martian landscape looks familiar somehow, not unlike some deserts here on Earth. Should we give in to our wanderlust, then — or would it be better leave Mars to the robots?