Variantes genética podría causar hipertensión en embarazada
12 de agosto de 2021
Unos investigadores británicos hallaron que las mujeres embarazadas analizadas también tenían niveles bajos de potasio en la sangre durante los primeros meses de embarazo. Las mujeres tuvieron un embarazo exitoso.
La investigación, liderada por científicos de la Universidad Queen Mary de Londres y el hospital de San Bartolomé de la misma ciudad, en Inglaterra, señala que las pacientes afectadas también presentan niveles bajos de potasio en sangre durante los primeros meses del embarazo.
"Lo que fue particularmente satisfactorio es que conocer la causa de la hipertensión en estas mujeres les permitió completar un embarazo exitoso", destacó Morris Brown, profesor de hipertensión endocrina de la Universidad Queen Mary de Londres.
Las embarazadas afectadas lograron curarse por completo de la hipertensión mediante un procedimiento para extirpar el nódulo suprarrenal y pudieron suspender su pauta de medicamentos, remarcó Brown en un comunicado.
Los expertos estiman que la presión arterial alta afecta al 30 % de los adultos y que, en la mayoría de los casos, se debe a una combinación de factores heredados y adquiridos que requieren un tratamiento a largo plazo para prevenir las complicaciones de ataques cardíacos.
En una de cada diez personas con hipertensión puede identificarse y eliminar la causa específica, normalmente debida a un pequeño nódulo benigno en una de las glándulas suprarrenales.
También participaron en el estudio varios expertos de instituciones científicas francesas, como la profesora Christina Zennaro, directora de investigación de Inserm en el Centro de Investigación Cardiovascular de París.
JU (efe, nature.com, medicalxpress.com)
Una breve historia de la investigación genética
En el 2020 hubo un Premio Nobel para CRISPR/Cas9 . Y con razón. Porque las "tijeras genéticas" son un gran avance en el campo de la modificación del ADN. Una mirada (incompleta) a los pioneros de esta tecnología.
Imagen: Colourbox
1869
En un laboratorio en el sótano del castillo de Hohentübingen, el médico Friedrich Miescher encuentra el ácido nucleico en el núcleo de las células de pus. Hoy en día se conoce como ADN (ácido desoxirribonucleico). Sin embargo, a Miescher no le quedó claro que había descubierto la base de la genética.
Imagen: MUT
1910
Ludwig Karl Martin Leonhard Albrecht Kossel (sí, tenían nombres tan largos en ese entonces) gana el Premio Nobel por la identificación de los cuatro bloques de ADN: adenina, citosina, timina y guanina. También descubrió el uracilo, un bloque de construcción de ARN. Sin embargo, ni siquiera él sabía que estos bloques de construcción son el lenguaje químico de la vida.
Imagen: Imago Images/Panthermedia/ktsdesign
1943
El hecho de que el ADN lleva la información genética solo es comprobado 30 años más tarde por Oswald Avery. Muestra que las bacterias adquieren nuevas habilidades a través del intercambio de ácidos nucleicos, es decir, el ADN. Esto deja una cosa clara: el ADN contiene información transferible y por lo tanto hereditaria. Sin embargo, en ese momento nadie sabe cómo funciona la transferencia.
Imagen: Colourbox
1953
James Watson y Francis Crick publican su trabajo sobre la estructura 3D del ADN. Con la ayuda de los rayos X de Maurice Wilkins y Rosalind Franklin pueden mostrar que el ADN está compuesto por dos cadenas tortuosas, la doble hélice. Uno puede imaginárselo como una escalera de cuerda retorcida.
Imagen: picture-alliance/dpa/A. Warmuth
1958
Con el descubrimiento de la estructura tridimensional, Watson y Crick también proporcionan una hipótesis sobre el mecanismo de herencia. Las cadenas de ADN tienen una estructura complementaria. Cuando se separan, una hebra proporciona la estructura para la construcción de la otra hebra. De esta manera se “copia” el ADN. Esta hipótesis fue probada en 1958 por Matthew Meselson y Franklin Stahl.
Frederick Sanger desarrolla el primer método de secuenciación con el que se puede leer la secuencia de los bloques de construcción del ADN en la cadena de ADN. El primer organismo cuyo genoma ha sido decodificado es un virus llamado φX174
Imagen: Colourbox
1983
Kary Mullis inventa la reacción en cadena de la polimerasa (PCR). El método permite que los fragmentos de ADN se amplifiquen rápida y fácilmente in vitro, es decir, en probetas, y luego se analicen. Modificada, la técnica PCR se utiliza ahora como base para las pruebas de coronavirus.
Se publica una primera versión del ADN humano completo. Desde 2003, se considera que el genoma humano está completamente "decodificado". El hecho de que ahora sepamos cómo se construye el ADN no significa que conozcamos la función de cada gen. Pero la secuenciación proporciona la base para comprender mejor, por ejemplo, la influencia de nuestros genes en la salud.
Imagen: Photoshot/picture alliance
2012
Jennifer Doudna y Emmanuelle Charpentier publican su trabajo sobre CRISPR/Cas9 como un sistema para el procesamiento de ADN dirigido. Usando las "tijeras genéticas", los investigadores pueden seleccionar, corregir, eliminar o intercambiar ciertos genes. El hombre se convierte de creatura en creador.
Imagen: picture-alliance
2018
El investigador chino He Jiankui anuncia que utilizó las "tijeras genéticas" CRISPR/Cas9 para alterar el material genético de bebés para que sean inmunes al VIH. Esta ruptura del tabú provoca horror en todo el mundo. Los gobiernos, las universidades y cientos de científicos se distanciaron del experimento humano.
Imagen: picture-alliance/AP Photo/M. Schiefelbein
2020
La Academia de Ciencias de Estocolmo otorga a Emmanuelle Charpentier y a Jennifer A. Doudna el Premio Nobel de Química. Sus tijeras genéticas" CRISPR/Cas9 han revolucionado las ciencias de la vida molecular, han aportado nuevas posibilidades para el fitomejoramiento, han contribuido a innovadoras terapias contra el cáncer y podrían hacer realidad el sueño de curar las enfermedades hereditarias.